Problema 2.- Programación en una aerolínea. Alpha Airline desea programar no más de un vuelo desde Chicago hasta cada una de las siguientes ciudades: Columbus, Denver, Los Ángeles y Nueva York. Los horarios de salida disponible son 8, 10 y 12 de la mañana. Alpha arrienda los aviones al costo de $5000 hasta las 10, y de $3000 después de las 10 y está en posibilidad de arrendar cuando mucho 2 por horario de salida. En la tabla 2 se presenta la aportación a las utilidades en miles de dolares esperadas por vuelo antes de los costos de arrendamiento. Elabore un modelo para una programa que maximice las utilidades. Defina con cuidado las variables de decisión.
Tabla 2.
| ESPACIO DE TIEMPO |
| 8 a.m. | 10 a.m. | 12 m |
Columbus | 10 | 6 | 6 |
Denver | 9 | 10 | 9 |
Los Ángeles | 14 | 11 | 10 |
Nueva York | 18 | 15 | 10 |
Solución:
1.- Variable de Decisión:
Xij= 0 si el avión no sale a la hora i(i=8,10,12=1,2,3) hacia la ciudad j(j=Columbus,Denver, Los
Angeles, Nueva York=1,2,3,4)
1 si el avión sale a la hora i(i=8,10,12=1,2,3) hacia la ciudad j(j=Columbus,Denver,Los
2.- Restricciones:
Número de vuelos hacia:
Columbus: x11 + x21 + x31 <=1 (limitante excluyente)
Denver: x12 + x22 + x32<=1(limitante excluyente)
Los Ángeles: x13 + x23 + x33<= 1(limitante excluyente)
Nueva York: x14 + x24 +x34 <= 1(limitante excluyente)
Número de Vuelos por Horario:
8 a.m.: x11+ x12+ x13+x14<=2(limitante excluyente)
10 a.m.: x21+x22+x23+x24<=2(limitante excluyente)
12 m: x31+x32+x33+x34<=2(limitante excluyente)
3.- Función Objetivo:
Maximizar=
[10x11+6x21+6x31+9x12+10x22+9x32+14x13+11x23+10x33+18x14+15x24+10x34
-5(x11+x12+x13+x14+x21+x22+x23+x24)-3(x31+x32+x33+x34)]*1000
RESULTADOS EN LINGO: